## Structure Reports

Online
ISSN 1600-5368

Ming-Hua Zhang, Shu-Ling<br>Zheng, Jian Zhou, Shang-Yuan Liu and Zeng-Guo Zhao*

Department of Chemistry, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: zguozhao@126.com

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.049$
$w R$ factor $=0.134$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

# $N$-(2-Hydroxyethyl)pyrazine-2-carboxamide 

The title compound, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$, crystallizes with two independent molecules in the asymmetric unit. The amide group lies almost in the pyrazine plane. Each molecule is linked to three other molecules by means of hydrogen bonds, giving rise to a ladder-like two-dimensional network. Adjacent twodimensional networks are linked by hydrogen bonds to form a three-dimensional structure.

## Comment

In coordination chemistry, heterocyclic compounds containing N atoms are very useful ligands; for example, pyrazine, as a bridging group, is capable of coordinating to metal ions such as manganese (Coher \& Mautner, 1999), forming an infinite ordered long-chain coordination polymer (Ding et al., 2000; Holman et al., 2005). The investigation of such compounds has attracted a great deal of interest in recent years. In order to prepare a new compound, we attempted to synthesize a pyrazine derivative with a substituent including N and O atoms, which can easily promote hydrogen bonding (Goswami et al., 2005). For this, two isolated polymeric chains might be connected through weak hydrogen-bond interactions, forming a network which perhaps has some potential for future research. Therefore, we synthesized the title compound, (I), which is reported here. Compounds in which this ligand is coordinated to metal ions will be reported later.

(I)

Compound (I) contains two independent molecules in the asymmetric unit. In the two independent molecules, the C5N 3 and $\mathrm{C} 12-\mathrm{N} 6$ bond lengths are 1.327 (3) and 1.328 (3) $\AA$, respectively, approximately equal to a $\mathrm{C}=\mathrm{N}$ double-bond length (Shanmuga Sundara Raj et al., 2000), indicating that atoms N3 and N6 of the amide groups must also be $s p^{2}$ hybridized. This conclusion is also supported by the $\mathrm{O} 1-\mathrm{C} 5-$ C 1 and $\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 8$ angles of 119.93 (19) and 119.6 (2) ${ }^{\circ}$, respectively, and by the fact that atoms $\mathrm{N} 3, \mathrm{O} 1$ and C 5 , and atoms N6, O3 and C12, lie almost in the pyrazine plane. In (I), other bond lengths and angles are norma.
In the conformation of (I), hydrogen bonds play an important role. Each molecule is linked to three other molecules by means of hydrogen bonds, giving rise to a two-

Received 16 September 2005 Accepted 30 September 2005 Online 8 October 2005


Figure 1
The structures of the two independent molecules in the asymmetric unit of (I), with displacement ellipsoids at the $30 \%$ probability level.


Figure 2
Part of the crystal structure of (I), showing the formation of $R_{2}^{2}(14)$ rings by two classical hydrogen bonds (dashed lines). H atoms have been omitted.


Figure 3
Part of the crystal structure of (I), haveng the formation of a chain of pairs of molecules by hydrog bonds (dat lines) along the [101] direction.
dimensional (Tonogaki et al., 1993; Glidewell et al., 2002) hydrogen-bonded structure (Fig. 2, Table 2), each of which


Figure 4
Part of the crystal structure of (I), showing the formation of a [001] chain. Hydrogen bonds are shown as dashed lines.
generates a centrosymmetric $R_{2}^{2}(14)$ ring possessing a stabilized chair conformation. In addition to these two classical hydrogen bonds, two other hydrogen bonds exist, of classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ types, which produce $R_{2}^{2}(8)$ rings coplanar with two adjacent pyrazine rings. Additionally, there exists one $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, which connects the molecules together. Thus an infinite chain of pairs of molecules running parallel to [100] is generated (Fig. 3). Furthermore, propagation of the hydrogen bonds mentioned above produces a one-dimensional chain along the [001] direction (Fig. 4). The combination of the [100] and [001] chains generates a molecular ladder-like two-dimensional network; adjacent ladders are linked linked by hydrogen bonds to form a three-dimensional structure.

## Experimental

The title compound was synthesized according to the method described by Darmstadt \& Munick (1935). Single crystals of (I) were grown from a solution in methanol by slow evaporation (yield $79 \%$, m.p. 391 K ).

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=167.17$
Triclinic, $P \overline{1}$
$a=5.3054$ (12) $\AA$
$b=7.8287$ (19) $\AA$
$c=19.880$ (5) A
$\alpha=86.953(4)^{\circ}$
$\beta=87.262(4)^{\circ}$
$\gamma=74.451(4)^{\circ}$
$V=793.9(3) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.399 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1336 \\
& \quad \text { reflections } \\
& \theta=2.7-25.6^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.28 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.962, T_{\text {max }}=0.983$
4504 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.134$
$S=1.05$
3197 reflections
228 parameters
H atoms treated by a mixture of independent and constrained refinement

> 3197 independent reflections
> 1895 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.022$
> $\theta_{\max }=26.4^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-9 \rightarrow 8$
> $l=-24 \rightarrow 15$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0576 P)^{2}\right. \\
\quad \quad+0.0883 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.042(5)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left(\AA^{\circ}\right)$.

| N3-C5 | $1.327(3)$ | $\mathrm{C} 1-\mathrm{C} 5$ | $1.504(3)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{O} 1-\mathrm{C} 5$ | $1.232(2)$ |  |  |
| $\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 3$ | $125.3(2)$ | $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 1$ | $114.78(19)$ |
| $\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 1$ | $119.93(19)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\left(\mathrm{A},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {i }}$ | 0.82 | 1.94 | $2.763(3)$ | 176 |
| $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$ | 0.82 | 2.01 | $2.813(2)$ | 166 |
| $\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{~N}^{\text {iii }}$ | $0.83(3)$ | $2.31(3)$ | $3.062(3)$ | $151(3)$ |
| $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 5^{\mathrm{iv}}$ | $0.84(2)$ | $2.36(2)$ | $3.090(3)$ | $145(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1$ | $0.84(2)$ | $2.28(2)$ | $2.699(3)$ | $111(2)$ |

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x,-y+1,-z+1$; (iii) $x+1, y, z$; (iv) $x+1, y-1, z$.

Atoms H3 and H6 bound to the atoms N3 and N6 were found in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ A and $\mathrm{O}-\mathrm{H}=0.82 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ values set equal to $1.2(\mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right.$ and OH$)$ times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

## References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Coher, M. A. S. \& Mautner, F. A. (1999). Polyhedron, 18, 1805-1810.
Darmstadt, O. D. \& Munich, E. W. (1935). US Patent 2149279.
Ding, Y., Lau, S. S., Fanwick, P. E. \& Walton, R. A. (2000). Inorg. Chim. Acta, 300-302, 505-511.
Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. \& Wardell, J. L. (2002). Acta Cryst. C58, o97-o99.

Goswami, S., Dey, S., Maity Annada, C. \& Jana, S. (2005). Tetrahedron Lett. 46, 1315-1318.
Holman, K. T., Hammud, H. H., Isber, S. \& Tabbal, M. (2005). Polyhedron, 24, 221-228.
Shanmuga Sundara Raj, S., Fun, H.-K., Lu, Z.-L., Xiao, W., Gong, X.-Y. \& Gen, C.-M. (2000). Acta Cryst. C56, 1015-1016.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. \& Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.


[^0]:    © 2005 International Union of Crystallography

